Magnitude and distribution of stresses in composite resin and sound dentine interface with mechanical retentions

نویسندگان

  • Gisaku Kuramochi
  • Eduardo Borie
  • Iara-Augusta Orsi
  • Mariano Del Sol
چکیده

BACKGROUND Adhesive systems are constantly subjected to mechanical and chemical stresses that negatively impact the integrity and durability of the dentine-adhesive interface. Despite the lack of evidence to support or reject the clinical indication for mechanical retention, the potential further contribution of these preparations to the behavior of the composite resin-sound dentine bond has been rarely addressed. The authors evaluated by finite element analysis the effect of mechanical retention on the magnitude and distribution of stresses in a composite resin-sound dentin bonding interface when subjected to tensile and shear forces. MATERIAL AND METHODS A three-dimensional model was created based on three cylindrical volumes representing the sound dentin, adhesive system, and composite resin. From this main model, two models were designed to simulate dentine bonding: 1) a model with no mechanical retention, which considered flat adhesion; and 2) a model with retention, which considered four hemispherical holes on the dentine surface. Both groups were subjected to linear static analysis under tensile and shear loading of 200N. RESULTS At the model with retentions' bonding interface under tensile and shear loading, a concentration of Von Mises equivalent stress was observed within the retentions, with a reduction of those stresses on the bonding boundary surface. CONCLUSIONS Additional mechanical retention increases the tensile strength of the sound dentin-composite resin bonding interface, promoting a decrease in the magnitude of the stresses and their redistribution under tensile and shear loading. Key words:Adhesion, composite resins, dentine, finite element analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بررسی آزمایشگاهی مقاومت شکست ترمیمهای کامپوزیتی باند شده

Introduction: This study was performed to evaluate the effect of dentine bonding agents and Glass Ionomer cement beneath composite restorations and its resistance on fractures of endodontically treated teeth. Material and Methods: Forty sound maxillary teeth were selected ten of them for positive control, and on the rest, RCT and MOD cavity preparations were done with standard methods. Then, ...

متن کامل

Stress Distribution in Four Restorative Methods in Endodontically Treated Maxillary Premolar: A 3D Finite Element Analysis

Introduction: the Restoration of endodontically treated teeth is critical, and the Awareness of stresses developed by oblique and vertical forces in restorative methods take a great role in treatment plans. Due to the anatomical shape and inherent form of the stress distribution premolars, could be lost by fractures. Some fractures such as vertical fracture which is probable in...

متن کامل

Effect of Zinc Oxide-Eugenol Temporary Restorations on Bond Strength of Composite Resin

Introduction: Effect of zinc oxide-eugenol (ZO-E) on bond strength of composite is equivocal. The aim of the present study was to determine if ZO-E affects shear bond strength. Methods: For the purposes of the study, extracted human molar teeth were ground so thatcomposite rods could be bonded to dentine. In group 1, dentine was not exposed to ZO-E. In group 2,...

متن کامل

بررسی اثر کاربرد سمان چسبنده بر ریزنشت حد فاصل دو ماده آمالگام و کامپوزیت

Background and Aim: Patients always complain about metallic color of amalgam restorations. Covering amalgam by composite can solve this problem. Since polymerization shrinkage is a serious shortcoming in composites, application of the combined amalgam and composite restoration is one of the methods to reduce leakage in the cervical margins of posterior restorations. The aim of this invitro stud...

متن کامل

ارتباط ضخامت دنتین باندینگ رزینی با میزان انقباض پلیمریزاسیون: طراحی روش

Dentine bonding systems are usually unfilled, and so their shrinkage may be significant. High shrinkage may cause internal stress at the interface between resin-composite restoration and the dentine substrate. Failure of the adhesive interface may be observed due to the interna! stress. The aims of this study were:A) To obtain a suitable method for measuring the kinetics of polymerisation shrin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2015